

ROS and MoveIT Cobot Programming

Level: Bachelor/Master (1-2 students possible)

Duration: 2-3 months

Start: By agreement

Mentors: Nikola Knežević

Institution: ETF Robotics

Overview and Technology: This project implements **real-time, sensor-driven robot motion** for an **ABB IRB120** using **ROS** as the high-level software framework and **ABB Externally Guided Motion (EGM)** as the low-latency motion interface. Instead of running only pre-programmed trajectories on the controller, the robot's TCP (tool center point) motion is continuously updated from an external computer (ROS PC), enabling **online path correction, interactive guidance, and adaptive automation**. The core idea is: **ROS computes motion targets** (pose, velocity, or corrections) from a planner, sensor, or operator input, and sends them at a fixed cycle to the ABB controller via **EGM**. The ABB controller executes these targets in real time, while still enforcing internal safety limits, kinematic constraints, and motion supervision

Platforms / hardware	Software & tools
<ul style="list-style-type: none"> • ABB IRB 120 6DoF • PC Workstation • Intel RealSense Camera 	<ul style="list-style-type: none"> • Linux + ROS • Python, C++, OpenCV, MoveIT • ABB RobotStudio
Project options (projects can be modified based on student interests)	
<ul style="list-style-type: none"> • Bin pick and place • Conveyor pick and place • Palletizing 	
Expected outcomes	Recommended background
<ul style="list-style-type: none"> • Literature review • Project code and documentation/video • Final report in IEEE research paper form 	<ul style="list-style-type: none"> • Basics of robot programming and control • ROS basics + MoveIT • ABB RobotStudio
Literature	
<ul style="list-style-type: none"> • MoveIT tutorials • ROS Basics • ABB RobotStudio tutorials 	