

Action Recognition using 2D/3D Skeleton Sequences

Level: Bachelor/Master (1-2 students possible)

Duration: 3 months

Start: By agreement

Mentor: Milos Petrovic

Institution: ETF Robotics

Overview and Technology: This project addresses **action recognition** using **2D and 3D pose sequences** extracted from video. Instead of recognizing actions directly from pixels, the system uses a pose estimator to obtain a skeleton time series, reconstructs 3D joints, and then applies spatio-temporal deep models (GCNs, 3D CNNs, or transformers) to classify actions. Students will build an end-to-end pipeline (pose extraction -> skeleton normalization -> training/inference), evaluate on public datasets, and compare skeleton-based methods against RGB+D baselines in terms of accuracy, speed, and robustness to appearance changes.

Platforms / hardware	Software & tools
<ul style="list-style-type: none">• PC Workstation (GPU recommended)• Public video datasets• RGB+D camera	<ul style="list-style-type: none">• Python (NumPy, OpenCV)• PyTorch + OpenMMLab (MMPose, MMAction2 / PySKL)• PyTorchVideo (optional RGB baseline)
Project options (projects can be modified based on student interests)	
<ul style="list-style-type: none">• Extract 2D skeletons with MMPose and train MMAction2/PySKL skeleton models (ST-GCN, PoseC3D, etc.)• Lift to 3D skeletons (VideoPose3D/MeTRAbs) and benchmark 2D vs 3D recognition• Speed-up and deploy: real-time webcam inference, model compression/quantization, lightweight backbones	
Expected outcomes	Recommended background
<ul style="list-style-type: none">• Literature review• Project code and documentation/video• Final report in IEEE research paper form	<ul style="list-style-type: none">• Digital image processing basics and camera geometry (2D/3D coordinates, normalization)• Python programming (NumPy/OpenCV) and basic software engineering• Basics of machine learning / deep learning (PyTorch)
Literature	
<ul style="list-style-type: none">• MMAction2 model zoo: mmaction2.readthedocs.io/en/latest/model_zoo/recognition.html and mmaction2.readthedocs.io/en/latest/model_zoo/skeleton.html• MMPose for keypoint extraction; alternatives: MediaPipe Pose Landmarker and OpenPose• ST-GCN paper; PySKL toolbox; PyTorchVideo (optional RGB baselines)• OpenPose / MediaPipe for pose extraction	