

Advanced robot control in MuJoCo

ETF Robotics Lab — project brief (one-pager)

Level: Bachelor/Diploma/Master (1-3 students possible)

Duration (per student): 105 hours. Comprises: ~20 hours self-guided learning, ~15 hours guided learning, ~20 hours self-guided exploration, ~10 hours progress reporting, ~30 hours project realization, ~10 hours final project reporting

Expected timeline and work: 3 months (35 hrs/month, i.e., 8 hrs/week)

Start: By agreement

Mentors: Filip Bečanović

Overview and Technology: Make robot manipulators fetch objects while avoiding collisions, make quadrupeds walk or jump, make bipeds walk or stand up. Used technologies (software only):

- Bash command line
- Git+GitHub
- Python3
 - Versioning (conda/pip)
 - Virtual environments (venv, virtualenv)
 - Package distribution (pip)
 - Numerical computation packages (PyTorch, Jax, NumPy, CasADi, gymnasium ...)
- MuJoCo
 - Modeling (MJCF)
 - Simulation (mujocopy)
 - Control (gymnasium or mujoco or CasADi)

Platforms / hardware <ul style="list-style-type: none">• Your PC• Lab PC with NVidia GPU	Software & tools <ul style="list-style-type: none">• Git + GitHub• MuJoCo (MJCF, mujocopy, mjt, gymnasium)• Python 3 (conda/pip, venv/virtualenv)• Pytorch, Jax, NumPy, CasADI, ...
Project options (projects can be modified based on student interests) <ul style="list-style-type: none">• Manipulator robot pick-and-place with collision avoidance• Quadruped robot gait or jump• Biped robot gait or stand-up	
Expected outcomes <ul style="list-style-type: none">• Clean, well-ordered public GitHub repository• Re-usable and clean software API• Multiple video demonstration to be showcased on the lab's website	Recommended background <ul style="list-style-type: none">• Introductory knowledge of robot kinematics, dynamics, and motion planning• Above introductory experience with Python 3• Object-oriented
Literature <ul style="list-style-type: none">• Mostly hands-on tutorials• Software documentation• Introductory books on Robotics, Numerical Optimization, Reinforcement Learning.• Lynch, K. M., & Park, F. C. (2017). <i>Modern robotics</i>. Cambridge University Press.• Nocedal, J., & Wright, S. J. (2006). <i>Numerical optimization</i>. New York, NY: Springer New York.• Sutton, R. S., & Barto, A. G. (2018). <i>Reinforcement Learning: An Introduction</i>, MIT Press, Cambridge, MA.	