

Myoelectric control of a compliant robot gripper

ETF Robotics Lab — project brief (one-pager)

Level: Exam project, Bachelor thesis, Master thesis, or an internship

Duration: 2 to 6 months

Start: By agreement

Mentors: G. Milovanović; N. Knežević; K. Jovanović

Institution: ETF Robotics

Overview and Technology: Topics are defined so that the student can deal with the myoelectric control of a compliant robotic gripper to a greater or lesser extent. The complexity of the task ranges from completely theoretical topic to a practical one, implying advanced research activities. This is on student to choose depending on his/her background, interests, time resources, etc.

Platforms / hardware <ul style="list-style-type: none">QB move maker pro variable stiffness actuatorJoystickDelsys Trigno wireless EMG system	Software & tools <ul style="list-style-type: none">MATLAB (MathWorks)Simulink (MathWorks)EMG database will be provided
Project options (projects can be modified based on student interests) <ul style="list-style-type: none">Detailed survey of state-of-the-art robotic grippersInvestigation of SVM as a classifier of hand gestures, envisioned to be used as commands for a robot gripperTesting of the model(s) using a robot in the lab	
Expected outcomes <ul style="list-style-type: none">Literature reviewProject code and documentation/videoFinal report in IEEE research paper form	Recommended background <ul style="list-style-type: none">Robotics basicsBasics in EMG signal processingMachine learning and feature engineering fundamentalsDiligence and independence in work
Literature <ul style="list-style-type: none">Quitadamo, L. R., et al. "Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review." <i>Journal of neural engineering</i> 14.1 (2017): 011001.Toledo-Pérez, Diana C., et al. "Support vector machine-based EMG signal classification techniques: A review." <i>Applied Sciences</i> 9.20 (2019): 4402.Other documentation	